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Analysis of Electromagnetic Wave Propagation in a Magnetized
Re-Entry Plasma Sheath Via the Kinetic Equation

Robert M. Manning
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Abstract

Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically
induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that
is experienced during atmospheric reentry can be mitigated through the appropriate control of an external
magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and
involves an analytical solution for the electric and magnetic fields within the plasma allowing for a
description of the attendant transmission, reflection and absorption coefficients. The ability to transmit
through the magnetized plasma is due to the ‘magnetic windows’ that are created within the plasma via
the well-known ‘whistler modes’ of propagation. The case of 2 GHz transmission through a re-entry
plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density
and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves
through the re-entry phase.

1.0 Introduction

Electromagnetic wave (EM) propagation through a flowing plasma layer to maintain communications
and navigation to hypersonic and space re-entry vehicles has been a problem for over 45 years. The
classical radio frequency (RF) blackout results when the associated EM wave is reflected and absorbed by
the free electrons that make-up the plasma sheath which envelops the re-entering vehicle. The plasma is
the result of extreme heating of air by the strong shock wave that is created by the leading edges of the
vehicle [Bletzinger, et al., 2005 and references therein]. Such a plasma has associated with it a
characteristic frequency, the ‘plasma frequency’, below which RF transmission is reflected and absorbed;
RF radiation above this frequency will easily pass through the plasma. Since this plasma frequency is
proportional to the electron concentration within the plasma, this frequency will vary according to the
altitude and shape of the vehicle, as well as the angle of attack. Thus, for a given communications
scenario, a particular frequency is assigned; As the vehicle begins its re-entry into the earth’s atmosphere,
shock waves are created and a plasma begins to be formed. At a particular electron concentration, the
plasma frequency will exceed that of the communications link and transmission to and from the vehicle
will cease. As the vehicle begins to decelerate, the electron density and thus the plasma frequency
decrease and RF communication to and from the vehicle once again becomes possible.

Several approaches have been advanced in order to mitigate RF blackout. The obvious ones are to use
communications frequencies higher than that of the plasma frequency that will develop during re-entry.
However, as mentioned above, a specific maximum plasma frequency is dependent upon several
parameters and becomes very difficult to establish. A high power can be used to overcome the reflection
and absorption of the plasma. This, however, severely complicates the design and operation of a
communications system, especially the equipment on the re-entering vehicle. Another method is to inject
electrophilic substances (quenchants) into the plasma flow field of the sheath so as to de-ionize the
plasma (at least, severely reduce the electron concentration) and lower the plasma frequency below that of
the communications link. An application of this method occurred during the re-entry of Gemini 3 in 1965
[Schroeder and Russo, 1968] where it was demonstrated that plasma reflection and absorption can be
significantly reduced to allow for re-entry communications. Another technique that can be employed is
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that of establishing ‘magnetic windows’ within the plasma. Here, a static magnetic field is applied to the
plasma to essentially establish ‘whistler modes’ of propagation [Usui, et al., 2000]. Early experiments
using this concept were performed in 1964 [Russo and Hughes, 1964]. Here, a magnetic field of 750
Gauss was used in a ground experiment employing a plasma from a solid rocket motor. It was shown that
a signal improvement of about 20 dB can be realized. However, it was recently argued [Sharkey, 2003]
that magnetic fields on the order if 104 Gauss are needed to penetrate a re-entry plasma.

The ‘magnetic windows’ concept is very attractive in that, unlike the use of electrophilic substances
where a supply of such material is required throughout the blackout period (which, for some planetary re-
entry scenarios, can have a duration of 10 to 20 minutes), the magnitude of the static magnetic field can
be adjusted as conditions require to maintain a window in the otherwise RF opaque plasma. The
electrophilic technique is an ‘active’ mitigation method whereas the magnetic windows technique is a
‘passive’ method. If it can be demonstrated that magnetic fields of nominal strength can be used to elicit a
magnetic window within a plasma with re-entry parameters, and, additionally, it can be shown how the
magnitude of this magnetic field needs to be adjusted to maintain a window as the plasma properties
evolve, then the use of an external magnetic field as a mitigation technique will be a viable one.

This prescription can only be accomplished by realistically modeling the plasma propagation
environment. It is the purpose of this report to analytically study such a situation. A mathematical model
will is constructed, based on the Vlasov equations, i.e., the Maxwell equations supplemented with the
kinetic (Boltzmann) equation describing the electron distribution, that will capture the propagation
process through a flowing plasma immersed in an external magnetic field. The model will then be solved
in the approximation of weak spatial dispersion; the case of strong spatial dispersion will be treated in a
forthcoming report. It is shown that an applied magnetic field of nominal strength can alter the plasma
and create “magnetic windows” through which electromagnetic radiation can propagate.

2.0 The Initial Equations

2.1	 Incorporating the Maxwell Equations with Kinetic Theory—The Vlasov Equations

The basic starting point for modeling electromagnetic wave propagation through a flowing
hypersonic plasma are, of course, the Maxwell Equations

v v
∇ ⋅ E = 4πρ 	 (2.1)

v v
∇ ⋅ B = 0	 (2.2)

v

	

v v
∇× E + C

 a

B
= 0 	(2.3)

t

v
v v	 v1 ∂E 4π

	

∇× B − --=—j 	(2.4)
c ∂t	 c

The expressions relating the charge density ρ and current density j within the plasma are given in terms
of the statistical distribution functions fs (r, u, t) governing the charge carriers of the species s at
position rv and velocity υv at time t

∞

ρ = ∑ es ns ∫ .fs ( r, υ
v
,OPυ 	(2.5)

s	 −∞
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v
∞

esns ∫ 6fs (r,u,t)d 3 υ 	 (2.6)
s	 −∞

Here, s denotes either electron or ion charge carriers where ns = nion is the number of positively charged

ions, es = eion = +e or ns = ne is the number of negatively charged electrons, es = ee = −e. The statistical

distribution function for species s fs (r, u, t) is given by the Boltzmann equation incorporating collisions
via the Krook model [Tanenbaum, 1967; Bhatnagar, et al., 1954] for collisions, viz,

afs +υ ⋅ ∇ rfs + Fs ⋅ ∇ 6f = −ν s ( .fs − fs0)	 (2.7)
∂t

where νs is the effective collision frequency and fso(r, υ )v is the initial equilibrium distribution of the s-
th species. The model for the effective collision frequency used here, along with the basis of the Krook
model, is discussed in Appendix A. The force entering Equation (2.7) is given by the Lorentz force

v	 v
involving both the electric E and magnetic B fields of the wave as well as an externally applied
magnetic fieldv
B0,

vv	 ve	 v v
sFsms

C
E + c × (B + B0) ⎟

⎠

Collectively, the Maxwell equations, Equations (2.1) to (2.4), the Equations (2.5) and (2.6), and the
Boltzmann equation, Equation (2.7) with Equation (2.8) are known as the Vlasov equations.

These coupled integral and differential equations must now be applied to the situation of a
hypersonically flowing plasma upon which is incident a plane electromagnetic wave. The situation isv
depicted in Figure 1. The tangential velocity VT is due to the plasma flowing along the hypersonic vehicle

v
surface. The velocity VL is due to the motion of the hypersonic vehicle toward the observer. The plasma

is taken to be of infinite extent along the x and y axes. An incident plane electromagnetic field impinges
on the moving plasma layer from the transmitter fixed on the earth and travels along the z-axis in the –z

direction. The constant homogeneous magnetic field emanates from an antenna on the surface of the
vehicle along the z-axis in the +z direction. The surface in the x – y plane is taken to be along the solid
surface of the vehicle and that at the front of the layer of thickness L is taken to be open to the

v	 v
atmosphere. The values of the E and B fields of the electromagnetic wave are reckoned with respect to
the observer in the rest frame with respect to the moving plasma layer. Given these conditions, one can
write for the functional dependence of the field and current density,

v v
E = E(z, t) = Ex (z, t).z + Ey (z, t)ŷ	 (2.9a)

B = B(z, t) = Bx (z, t)x̂ + By (z, t)ŷ + B0ẑ	 (2.9b)

v v
j = (z, t) = jx (z , t)x̂ + jy (z , t)ŷj 	 (2.9c)

The problem is most easily dealt with by transforming the fields into the reference frame moving with the
plasma.

(2.8)
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2.2	 Transformation of the Fields Into the Reference Frame Moving with the Plasma
v	 v

The transformation of the fields E and B in the reference frame of the observer (transmitter) to
those k and B ′ that are seen in the frame moving with the plasma layer is given by the well-known
relations [Jackson, 1975]

2

E′=#+ 0 × B
)−γ+ 1 oo

⋅ E ) 	 (2.10)

2

B′=γ(B′−β× t
)−γ+ 1

0
0⋅

j
) 	 (2.11)

where

v
β ≡

VTi + VLz 
γ≡ 1 −β 2)(2.12)

and c is the velocity of light. Also, for the current density

j
v
′ = γ(j

v
 −β

v
ρ) 	 (2.13)

The invariance of the Maxwell equations has that, in the frame moving with the plasma,

v
v
∇ ′ × k + c ff = 0 	 (2.14)

t

v
v 1 ∂′E 4

π∇′×B′− --=—j ′ 	 (2.15)
c ∂t′ c

where V and t ′ are the appropriately transformed divergence and time. Consider now the extreme case
in which a hypersonic velocity of Mach 35 is realized, i.e., VT = VL ≈ 1.2 × 104 m/s. This yields

β ≈ 4.0 × 10 −5 << 1. In this case, the transformed equations Equations (2.13) and (2.14) essentially reduce
to those in the rest frame, i.e., Equations (2.3) and (2.4). Similarly, for the homogeneous applied magneticv	 v
field, B ′0 ≈ B0 . Hence, to within a first order approximation, Equations (2.1) to (2.4) can be employed in
the reference frame moving with the plasma. One can now incorporate these relations in the evaluation of
Equation (2.7).

One should also address the Doppler shifts that will be incurred in the transformation to the reference
frame moving with the plasma. This will not be addressed at this point as it is the goal of this work to
establish the possibility of the magnetic windows concept. A more careful study with will appear in a
forthcoming work will incorporate Doppler effects.

The final goal in the analysis that follows is the evaluation of the reflection, transmission, and
absorption coefficients of the plane wave interacting with the plasma layer; the ‘flow chart’ of this
process is depicted in Figure 2. The scattering process, as well as its solution, goes as follows. The
electric and magnetic fields of the plane electromagnetic wave induces a Lorentz force on the plasma
electrons. The induced force, in turn, produces a variation in the electron distribution function governing
the position and momentum of the electrons. This gives rise to an induced current within the plasma that
produces an associated variation of the fields within the plasma which, once again, induces an additional
Lorentz force. This non-linear process finally results in the establishment of field distributions at the
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boundaries of the plasma that determines the corresponding reflection, transmission, and absorption
coefficients of the incident field.

3.0 Application of the Foregoing to the Boltzmann Equation

3.1	 Reduction of the Equation

Since the current density is only a function of the longitudinal coordinate z, so too will be the
distribution function of Equation (2.7)

	

fs (rv, υv,t)=fs (z, υv,t)
	

(3.1)

The associated equilibrium distribution function is taken to be given by the Maxwell distribution

1 
3/2	

1 
3	

υ 2

L0 ( υ ) = L0 (161) = (—) (—) 
exp ⎜ − 	(3.2)

π 	 υ Ts	 υ 2
Ts

where the thermal velocity of the s-th species is given by

Ts [2kB:T:s	
(3.3)

Ms

Here, kB is Boltzmann’s constant, Ts is the absolute temperature of the s-th species of charges with mass

Ms . The distribution function fs(z,u,t) will be taken to be related to that of Equation (3.2) by a small

perturbation φ s (z, υ
v

, t), viz,

fs (z ,υ, t) = f 0 q)+ φ(z ,υ, t ),φ(z ,υ, t)<< fs 0 ( υ
I)	

(3.4)

In order for φ s (z, υ
v

, t) to be treated as a perturbation, the fields of the incident wave must also be treated
as a first order perturbation; writing the temporal dependence of the fields of the incident electromagnetic
wave as

	

Ex (z, t) = Ex (z) exp ( −iω t),	 etc.

one has from Equations (2.9a) and (2.9b)

vE = (Ex (z)x̂ + Ey (z)) exp ( − iω t)	 (3.5)

	

v
B = (Bx (z)x̂ + By (z)ŷ ) exp ( − iω t) + B0(z)	 (3.6)

in which one must now require for a perturbation solution, Ex , Ey , Bx , By << B0 . Finally, since the time-

harmonic fields of Equations (3.5) and (3.6) are taken to be the source of perturbation of the distribution
function given by Equation (3.4), one can further write

φ s (z , u , t) = φ s ( z , u )exp( −iω t ) 	 (3.7)
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Substituting Equations (3.4) to (3.7) into Equation (2.7) and dropping quantities that are second order
perturbations with respect to the fields and to φs(z,6) yields

v

ACω+ iν s )φ s ( z , i5) exp (− iω t)+υ z

 ∂φ s
 
( z , υ

) exp( − iω t )
∂z

v+( es--
P

	 ∇ ufs0 (υ i)+ 
c

× B(z) ⋅ ∇ uf 0 (I6I) ⎥
⎤ exp (− iω t ) 	 (3.8)

s 

P( z )⋅

⎡
+ ⎜ 	 JL c × B0 z ⋅∇6 fs0 (M) + × 

B0z ⋅ ∇ uφ s ( z , u )exp( − iω t )J = 0
Ms⎝ s

However, remembering the identity (υ
v

× B
v

)⋅υ
v
 = 0, one has that

v	 v	 w
υ × B(z) ⋅ ∇ ufs0 (M) = υ × B(z) ⋅ 

υ ∂fs0 = 0	 (3.9)
c 	 c	 υ ∂υ

and similarly for the term ( υvc)× B0zˆ ⋅ ∇
v

υv fs0( υv). (The term (u/c)× B0zˆ ⋅ ∇ r,φs (z, υ) ≠ 0
v 	v

	 since φs(z,u)

is not a function of the scalar υ.) Hence, Equation (3.8) reduces to

ACω+ iν s )φ s ( z , U )+υ z

 ∂φ s (z, 6) 
exp( − iω t )

∂z 	
v

(
es

-- )–i^(z) ⋅ 	
⎞ v

(3.10)

+
	

∇ uφ s ( z , U)+ m c× B0 z
J
⋅∇ uφ s z , υ) = 0

ms	 ⎝ s ⎠⎝

Defining the cyclotron frequency

ωcs ≡ 
es B0
	

(3.11)
ms c

and expanding O xz ⋅∇ υ φ s =(υ y ∂/∂υ x −υ x ∂/∂υ y ^ s as well as E ⋅∇υv fs0= (Ex ∂l∂υ x +Ey ∂l∂υ y )fs0 ,

Equation (3.10) becomes

	

υ z
 ∂φs − i(ω+ iν s )φ s + ωcs (υ y

∂
 −υ x φ s + (-es--)(Ex 	+Ey ∂ fs0 = 0 (3.12)

∂z ∂υ x	 ∂υ y	 ms	 ∂υ x 	 ∂υ y

This differential equation is most easily dealt with in plane-polar coordinates υ ⊥ and θ defined by

υ x = υ ⊥ cos θ ,υ y = υ ⊥ sin θ . In this instance, one has

∂ 	 ∂ 	 sin θ ∂ ∂ 	 ∂+ cos θ ∂
= cosθ−= sin θ 	 (3.13)

∂υ x 	 ∂υ⊥ υ⊥ ∂θ ∂υ y 	 ∂υ ⊥ υ ⊥ ∂θ

allowing Equation (3.12) to be written as (noting that fs0 is isotropic and independent of the polar angle
θ)

	

υ z 
φ s − i (CO+ ivs )φs − COOS Los- +(-

es
--

⎞
Ex cos θ+ E  sin 0) 	 = 0 	 (3.14)

∂z 	 ∂θ 	 ms 	
y	 ∂υ ⊥
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Finally, using the auxiliary fields [Gross, 1951; Bell and Buneman, 1964] defined by

EL ≡ Ex − iEy ,ER ≡ Ex + iEy 	 (3.15)

gives

Ex cos θ + Ey sin θ = —1 (EL exp(M )+ ER exp(− iθ )) 	 (3.16)
2

Substituting this into Equation (3.14) and rearranging terms yields

∂φ sωcs
^z, υ)− ∂φ s

Uz ^Z
,υ)

+*ω+ iν s )k(z, υ)
=( 2ms

 
)( EL exp( iθ ) + ER exp( − iθ )) t0 = 0 (3.17)

⊥

This form of the differential equation can now be solved using the method of characteristics. Writing the
equation as a relation along its characteristic curve, one has

dφ s = ∂φs ∂θ + a ŝ az 
= ωCS 

∂φ s − υ Z ∂φ s

	

dt	 ∂θ ∂t ∂z ∂t	 ∂θ 	 ∂z

Therefore,

	

θ = ωcs t + θ ′ ,z = −υ z t
	

(3.18)

which combines to give θ = −(ωcs υ z )z + θ ′ . Changing back to the variables θ and z, ddt = −υ z (d  dz)

and Equation (3.17) becomes the first order differential equation

v

−υ z 
dφs ( z , υ ) + i (ω+ iν s * ( z , 6 )

dz	
(3.19)

=( 2

es )( EL exp ( − i (ω cs 1υ z ) z + iθ ′ )+ ER exp ( i (ωcs lυ z ) z − iθ ′ ))
∂υ⊥ = 0

This equation must now be solved across the plasma layer of thickness L, 0≤ z ≤ L.

3.2	 Solution of the Differential Equation Across the Plasma Layer

Consider the Fourier series of the function φ jz, u) over the interval 0≤ z ≤ L;

∞

φs ( z , υ)= ∑ φs ( κ l , υ )exp( iκ lz), κl ≡ 
L	

(3.20)
l=−∞

L

	

%	 v
φs (κ l , υ)= L ∫ φs (z , u ) exp ( −iκ lz)dz	 (3.21)

0

Thus, multiplying Equation (3.19) by exp(− iκlz) and integrating over z, using Equation (3.21) gives
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%
—

i (ωυ iν s )I
κl u iκ 	 L = 	 0 u	 L u 1)−

z	 ⎦
	 (3.22)

⎛ ⎞L 	 es 	 ⎡
κl ω+ -k (κl − ὼ s

⎤

υ z ⎠^ 2ms

 )∂f 0

∂υ ⊥ ⎣ ( 	 υ z ) 	 υ z )⎦

where exp( −iκlL) = exp( −lπ ) = ( − 1 )l and E%
L′ (κ) ≡ E%

L (κ) exp(iθ), E%
R′ (κ) ≡ E%

R (κ) exp( −iθ) . At

this point, contact must be made to the current density expression given by Equation (2.6); converting to
plane polar coordinates,

∞ 2π ∞v
j (z) = ∑ es ns ∫ ∫ ∫ υ⊥ ( .zcos θ + y sin θ ) fs ( z , υ ⊥ , υ z , t )υ ⊥ dυ ⊥ dθdυ z 	 (3.23)

s	 −∞ 0 0

As before, considering the identity

zcos θ+ y sin θ = 
2
z [(− iy) exp ( iθ)+( .z + iy ) exp (− iθ)]

and using it in Equation (3.23) and taking the scalar product with the particular vector x̂ + iŷ yields,

∞ 2π ∞

jR (z , t) ≡ jx (z , t) + ijy (z , t) = ∑ es ns ∫ ∫ ∫ υ ⊥ exp ( iθ)fs ( z , υ ⊥ , υ z , t ) dυ ⊥dθdυ z 	 (3.24)
s	 −∞ 0 0

Thus, the current density has been converted to a complex scalar current density in the transverse plane.
Substituting now Equations (3.4) and (3.7) into Equation (3.24), and using Equation (3.2), one as that the
fs*)I) term vanishes upon performing the υ z integration. Hence, what survives is the result

∞ 2π ∞

jR (z) = ∑ es ns ∫ ∫ ∫ υ ⊥ exp( iθ ) φ s ( z , υ⊥ , υ z ) dυ ⊥dθdυ z 	 (3.25)
s	 −∞ 0 0

where jR(z, t) = jR (z)exp(− iω t). Thus, the current density associated with the polarized wave fields ER

and EL of Equation (3.15) are also polarized; however ER and EL remain uncoupled. Therefore, one can
use either ER or EL separately in Equation (3.22). Selecting ER, i.e., the whistler mode ER = Ex + iEy ,

Equation (3.22) becomes, upon using the definition κ′l ≡ κl −ω cs υz ,

φs( κl ⊥ , υ z )=^( κ 1 −Ω s ) iL ^
− 1

I Δs (υ⊥ , υ z )− L ⎜
1
	

es	 ∂fs0
 1ER( κl ) I	 (3.26)

υ z ⎠^ 2ms ⎠( ∂υ⊥ 	 ⎭

where

- ω− ωcs + iν s	 3.27s = 	 ( 	 )
υz

and
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Δ s (υ ⊥ , υ z )≡ φ s (0, υ ⊥ , υ z )−φ s (L , υ ⊥ , υ z )(− 1 )
	

(3.28)

Now, rewriting Equation (3.25) by limiting the υz integration in velocity space to the interval 0≤ υz < ∞

gives

∞ 2π ∞

jR ( z ) = ∑ es ns ∫ 	 ∫ υ⊥ exp (tθ)Φ s (z , υ ⊥ , υ z )dυ ⊥dθdυ z 	 (3.29)
s	 0 0 0

where

Φ s ( z , υ⊥ , υ z ) ≡ φ s ( z , υ⊥ , υ z )+φs ( z , υ⊥ , −υ z ) 	 (3.30)

The Fourier transform of Equation (3.29) is, using the form of Equation (3.21),

∞ 2π ∞

jR( κl) = ∑ es n
s ∫ ∫ ∫ υ 2 exp (tθ)Φ s (κ l , υ⊥ , υ z )dυ⊥dθdυ z 	 (3.31)

s	 0 0 0

where

Φ% s (κ l , υ ⊥ , υ z ) ≡ φ% s (κ l , υ⊥ , υ z )+φ%
s (κ l , υ ⊥ , −υ z ) 	 (3.32)

Substituting Equation (3.26) into Equation (3.32) yields, after expanding terms and simplifying,

Φ s (κ l , υ⊥ , υ z ) = Ω
2 

t 

K2
 r L ( Δ s (υ⊥ , υ z )+Δs (υ ⊥ , −υ z ))

s	 ⎩ 	
(3.33)

Ω−2 s Ks tg( κ l )+ as-( Δs
 υ

⊥ 	 ⊥( , Uz)-As^u , −υ z ))}
z

where

Ks 
_ e ⎛ ∂__ s	 .fs0 ⎞

(3.34)
2ms ⎝ ∂υ ⊥ ⎠

Using Equation (3.33) in Equation (3.31) will give a relation for the current density. However, values for
the parameters Δs (υ⊥, υ z ) must first be determined. By their definition of Equation (3.28), they are

functions of the boundary values of the functions φs.

3.3	 Incorporation of Boundary Conditions

By the definition of the problem, the plasma at the surface z = 0 is against the solid body of the
hypersonic vehicle. Thus, reflective boundary conditions prevail from which one can write

φs (0, υ ⊥, υ z ) = φs ( 0, υ⊥ , −υ z )
	

(3.35)

However, at the boundary z = L , the plasma is open to the atmosphere so diffusive conditions prevail
which give
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φs (L , υ⊥ , −υ z ) = 0	 (3.36)

With these assignments, Equation (3.33) becomes

%Φ s (κ l , υ⊥ , υ z )=ΩS 
a 

κ2 
^-!9-( 2φ s

L
( 0, υ ⊥ , υ z )−φ s ( L , υ ⊥ , υ z )(− 1 )

l

	 (3.37)

−2 
Ωs KstR ( κ l

)—
L

s

 
φs ( L , υ ⊥ , υ z )( − 1 )l

z	 ⎭

At this point, the values of the distribution functions at the boundaries, φ s (0, υ ⊥, υ z ) and φ s (L , υ⊥ , υ z )

still remain unknown. In order to determine these values, a self-constancy condition can be applied.
Hence, using Equations (3.35) and (3.36) with Equation (3.32) gives

	

Φ s (0, υ ⊥, υ z ) = 2φ s (0, υ ⊥, υ z )	 (3.38)

and

	

Φ s (L , υ⊥ , υ z ) = φ s (L , υ⊥ , υ z ) 	 (3.39)

But by Equation (3.20),

∞

Φ s ( 0, υ⊥ , υ z )= 	 (3.40)
l=−∞

and

∞

Φ s ( L , υ ⊥ , υ z )=∑Φ s (κ l , υ⊥ , υ z )(− 1 )
l
	 (3.41)

l=−∞

Hence, form these relations, one has

∞

∑ (̂ s (κ l , υ⊥ , υ z ) = 2φs (0, υ⊥ , υ z )	 (3.42)
l=−∞

and

∞

∑Φ s (κ l , υ⊥ , υ z )(− 1 )
l
 =φ s ( L , υ ⊥ , υ z ) 	 (3.43)

l=−∞

Equation (3.37) can now be used on the left sides of Equations (3.42) and (3.43) to give two equations in
the two unknowns φ s (0, υ ⊥, υ z ) and φ s (L , υ⊥ , υ z ) . To this end, substituting Equation (3.37) into

Equation (3.42) and solving for φ s (0, υ⊥, υ z ) ,

∞

	

φ s ( 0, υ ⊥ , υ z )=−
⎜ ΩS 

a 

κ2 	
υ z )( − 1)

l
i (3.44)

	

l	
2L

l =moo	 ⎭
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where the terms that contain the factors κl vanish, i.e.,

∞ 	 ∞
iκ l	

= 0,∑
iκ l − 1)

l 
= 0	 (3.45)

Ω 2 	 2
l=−∞ s −κ l 	 l=−∞ s −κ l

Similarly, using Equation (3.37) in Equation (3.43) and solving for φs (L, υ⊥,υ z ) yields

∞ ⎛
φ s ( L , υ⊥ , υ z )=− 	

ΩS 

i 

κ2 I(
2as-)Ks ( − 1)

l
 ER( κ l )+(as-)φ s 

L 	
( L , υ ⊥ , υ z ) i ⎬ (3.46)

—	 ll—^0	 ⎭

At this point, it will facilitate further evaluations to simplify Equations (3.44) and (3.46) by
analytically performing summations over the parameters l where possible. Hence, using the summations

∞ ( 
i

∞ (

∑
Ω

ZΩ  
K2 = iL cot( Ω sL ),	 ∑ 

Ω2

Ω

 κ2
⎠
(− 1 )

l
 = iL csc( Ω sL ) 	 (3.47)

l=−∞ 	 s	 l ⎠ l=−∞ 	 s	 l

allow Equations (3.44) and (3.46) to be written,

i
Ω)(

1 i

	

φ s ( 0, υ ⊥ , υ z )=− ∑
 ΩS −x2 uz

)Kj^( κ l )−
2

φs ( L , υ ⊥ , υ z ) csc (Ω sL ) 	 (3.48)
l=−∞

and

φ s ( L , υ ⊥ , υ z )=− ∑ 2
⎜
ΩΩ 

κ1
)(

1
)Ks (− 1 )

l
tg( κ l )− iφ s ( L , υ , υ z ) cot (ΩsL )

z
⊥ 	 (3.49)

l=−∞ 	 s

i

Finally, the solution of these relations for φs (0,υ⊥,υ z ) and φs (L, υ⊥,υ z ) is straightforward; after using

some trigonometric identities, integral

∞

φ s ( L , υ⊥ , υ z ) = (exp(2D sL ) − 1) ∑ Cs (l)( − 1 )
l
 ER( κ l ) 	 (3.50)

l=−∞

∞

φs ( 0, υ ⊥ , υ z )= ∑ Cs (0) ( κ l )(( − 1)
l
exp(2 iΩ sL ) − 1)	 (3.51)

l=−∞

where

≡ 
⎛ iΩ

s
 

⎞⎟⎜⎛
 1 

⎞⎟Cs (l)
 ⎝ Ω s2 −κl2 ⎠⎝υ

z ⎠
K

s

(3.52)

Equations (3.50) and (3.51) give the sought-after expressions for the boundary values of φs needed in the
evaluation of Equation (3.37).
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11I(

1
2 ∞ 2 π ∞ 	

J
⎧ 	 ⎛

	 )-4;R (( 1jR ( κl ) =− ens ( ms 
⎠(υ Ts ) 

∫ ∫ ∫ υ⊥ fs0 (161) 1 −2 i ⎜
Ω2^

s

κ2 ⎜ 
z

l κ
l)

s	 0 0 0	 ⎪⎩ 	 l

+2 i
 Ω 2 −κj ⎠

⎜ 
L J	

n

2

Ω
K2 ⎟⎜

 
z 

)ER ( κr ) 
⎢⎣
( − 1 )r exp ( iΩ s L ) − 1

	

r= 	 r ⎠⎝

− 	 — ex 2 iΩ L 1 1 
∞ 	

1 E K dU d0dU
( 

i 

K 

)( 1

	

pr	
s ) –

)r– )l 
∑ Ω 2- κ 	

z )( − lr R r )

⎫
^ L	 z

^
	 ll	 l	 2	 2 	 1

s	 l	 r=−∞ 	 s	 r	 ⎪⎭

Using Equation (3.2) once again and performing the υ ⊥ and θ integrations gives

⎛
 1

1/2 2

jR( κl) = es ns ⎜

)( 1

π ⎠
	 (

υ

1
∞

Ts )
∫ exp −

Ts 

⎨ 2 i 
Ω2
	

2
	 I Z )tR( κl)

mss	 ⎝ 	 0	 ⎪⎩ 	 l ⎠⎝

+2
S

κ l

 κ2 ⎟⎜
 J	

nS
κ2
 (Z	 )tR (κ l ′ )[(− 1 )" exp ( iΩ s L )− 1]

l ⎠⎝ 	 =−∞ 	 l
υ z′

−(	
1

⎟ exp(2iΩ s L )
)( 1 ∞

− 1)( − 1)
l iΩ s (

(υ zΩs − κ l

	

L =l	 −∞ ⎝ Ωs −κ 11
l ⎠ ij

At this point, it facilitates further calculation to change variables using the prescription

ws
υz

≡υTs

which gives

ω − ωcs + iν sΩs = Ωs ( ws) =
ws υTs

Incorporating Equations (3.56) and (3.57) into Equation (3.55) yields

3.4	 Calculation of the Current Density

Using Equation (3.2) in Equation (3.34) and evaluating Equation (3.52), one has

2

r
Cs ( l)−

( ms )( υTs) (υ -

⊥

υ z )⎝ Ω 2 −κ2
l )L

0 (61) 	 (3.53)

One can now substitute Equations (3.50) and (3.51) into Equation (3.37) and this intermediate result into
Equation (3.31), upon remembering the definition E%

R′ ( κl) ≡ E%R ( κl) exp ( − iθ) , to finally obtain the

Fourier Transform of the current density within the plasma layer, viz,

jR ( κ l ) =σ ( κ l ) ER ( κ l ) −

where

(3.54)

(3.55)

(3.56)

(3.57)

∞

∑ σ ( κl , κ l ′ ) ER ( κ l ′ )
	

(3.58)
l ′=−∞
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⎛ 1 ⎞⎛ 1 ⎞
1/2 

⎛ 1 ⎞
∞
 Ω s

 
(ws ) ⎛ 

1 ) s
2 )dwsσ ( κ l ) ≡ ∑ 2iesns ⎜ ms ^ J ⎜ uTs ∫ ^S (

ws
- xl ⎜ 

ws

 exp( −w 	(3.59)
s	 ⎝ 	 ⎝ 	 0 	 l ) 	 ⎝

is the single mode conductivity and

_ 	

( 

1 ⎞⎛ 1 1/2 ( 1 
1(

1
 11

°w ( 	
κ l Ωs

 ( ws )
σ ( κ l , κ l

′ 
)

—
∑ 2es ns 

⎝ s ⎠⎝— ⎠ ⎝ Ts ⎠\ / I (^ 2	 2 (^ 2	 2
s
	 m πυ 	 L D ( SLs ( ws ) −κ l )( SL s ( ws ) −κl )′

⎛ ⎞
⋅ ⎜

1
 ⎟ − − 	 Ω 	 − − 	 Ω

′ 	
i	 w L	 i	 w L (3.60)s	 s	 s	 s

⎝⎠ws

Ωs ( ws)l l

SZ( ws -K 02 ( ws )-K2
(-1

x's )

1 )
l+r 

⎬ exp( −ws )dws

( s)	 l )( s 	 r)	 Ij

is the multi-mode conductivity. Thus, the current density anywhere within the magnetized plasma layer
due to the incident electromagnetic wave is given by

∞
%
	 ∞ ∞ 	

%

	

jR (z) = ∑ σ(κ l ) ER (κ l ) exp ( iκ l z)− ∑ ∑ σ(κ l , κ l ′ ) ER (κr ) exp ( iκ l z ) 	 (3.61)
l=−∞ 	 l=−∞ l′=−∞

At this point, contact must be made with the current density entering into Maxwell’s equations.

3.5	 Connecting the Current Density in the Plasma Layer with the Maxwell Equations

One first needs to relate the auxiliary complex electric field ER (z) = Ex (z) + iEy (z) of the incident

wave to the governing Maxwell Equations. Returning to Equations (2.3) and (2.4) and employing
Equations (3.5) and (3.6) gives in terms of the component fields

	

−∂
Ey 

x+
∂Ex y = ik ( Bxz + Byy ) 	 (3.62)

∂z 	 ∂z

and

−∂
By

z +∂
Bx y =−ik(Ex z + Eyy) + 4,(jx z + jyy)	 (3.63)

∂z 	 ∂z 	 c

Multiplying these relations by the auxiliary vector x̂ + iŷ , as used earlier, gives, respectively,

∂ER − 
kBR = 0	 (3.64)

∂z

and

∂BR + kER = − i 
4π 

jR	 (3 .65)
∂z 	 c
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where BR (z) ≡ Bx (z) + iBy (z) and jR (z) ≡ jx (z) + ijy (z) . From these two relations, the corresponding

wave equation for ER can be derived in the usual way,

∂ 2

∂
Z R + k2ER = −ik 4C jR

	 (3.66)

As the equations remain amenable in the Fourier domain, the transform of Equation (3.66) is now needed
to be used with Equation (3.58): thus, applying

L

%ER ( κ l ) = 
L ∫ ER ( z ) exp ( −iκ lz ) dz

0

(3.67)

by multiplying Equation (3.66) by exp ( − iκlz ) , integrating by parts, and using Equation (3.64) yields

⎛
k
 BR(L)( − 1)l

− BR( 0 ) + iκ l ⎜ ER ( L )(−1) l
− ER( 0 )

−κ2& (κ l )+ k2ER (κ l )=− ik 4c %
R( κl) 	 (3.68)

⎝ ⎠ ⎝ ⎠

Finally, substituting Equation (3.58) into Equation (3.68) and rearranging terms gives

κ2 − k2 − ik 4c σ ( κ l ) ⎟ER ( κ l ) = k ⎜
BR ( L ) ( −1l

− BR ( 0 )
⎜⎛⎝
	 L

	

E
R 

( L )( − 	r 	 )ER 
r	

(3.69)

+iκ l 	^
l – ER ( 0)	 4

	

− ik O
	

σ ( Kl , rIf	 ( Kr )
l′=−∞

This equation connects the fields on the surface boundaries of the plasma layer to the Fourier transform of
the fields within the plasma. This relation can be put into a more familiar form simply by dividing
through by k2 using Equation (3.57) and rearranging some factors to obtain

⎛ _κ 2 ⎞ ∞

 −

g

( κ l ) ER ( κl ) + ∑ S ( κ l , κr )ER ( κ r )
⎜ 	 ⎟2
⎝ 	 ⎠k

l′=−∞

= i KI ⎜
E

R 
( L )( − 1 ) l 

− 
E

R 
( 0) 

+
k ⎜ kL	 ⎟

⎝ 	 ⎠

B
R ( L )( − 1 ) l 

− BR ( 0)	
(3.70)

kL

with

( )%
	 2	 ω2 ∞ ( ω − ωOs + iν s ) exp( −w,2

s
π

0 ( ω−ωOs + iν s )2
−υ 2 κ2 wS 

w

and

(3.71)
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ω ⎞2 ∞
ps	 ω − ωOs + iν s∫ωL 2

0 (ω − ωOs + iν s )

⎛ ω − ω OS + iν )

⎦⎤

exp ⎜ i	 L
υ Ts ws

2
S (κ l , κp ) ≡ i ∑(

s

⎡
1 −(− 1 )r

⎣

κ l υ Ts w

(3.72)

−υ 2 OWS2 ⎪⎨ ω−ω s + iν s )2 −υ Ts κ2^Ts

l+ r
υ Ts ws( − 1 ) 	

1 − exp ⎜ 2 i 
ω − ω Os + iν s L

⎞⎤ I 
exp( −ws

2 )dws
ω − ωOs + iν s −υ Ts κ l ws I	 υ Ts ws ⎦⎪⎭

where the plasma frequency ωps of the s-th charge species is given by

2 _ 4πesnsωps =
Ms

(3.73)

Equation (3.70) forms the set of equations for the transform of the electric field within the plasma layer
that will be considered in what is to follow.

Unfortunately, the evaluation of the integrals indicated in Equations (3.71) and (3.72) cannot be
completed in its entirety. Although Equation (3.71) does indeed possess an analytical solution, its form
makes impossible the analytical evaluation of the electric field from the transformed field E%

R (κl) in

Equation (3.70). However, in the limits of weak spatial dispersion, the equations lend themselves to
analytical evaluation. Of course, it must be established that the re-entry plasma can be treated as one
possessing weak spatial dispersion. Again, it must be kept in mind that what is needed here are
expressions for the reflection, transmission, and absorption coefficients at the z = 0 and z = L boundaries
of the plasma layer. Thus, the transformation of the fields E%

R (κl) on the left side of Equation (3.70)

must be evaluated at these surfaces. This is the goal of the following development.

4.0 Evaluation in the Limit of Weak Spatial Dispersion

4.1	 The Limit of Weak Spatial Dispersion

Equation (3.71) can be rewritten as

2	 ω
n °r°	

exp (−ws )/(ω−ωOs + iν s ) d..

	

ε(κ l )= 1
−π

∑
 ωs J 	 2 2	

Ws 	(4.1)

s 0 1 − υTs κ l ws /(ω − ωOs + iν s )Z

Letting (ω − ωOs + iνs ) ~ (ω − ωOs )2 + ν s2 , consider the terms within the denominator of Equation (4.1) in

the case where

υTsκl ws 

1/2 
<<

2
(ω−ω Os ) +νs

which can be re-expressed as

NASA/TM—2009-216096	 15



	

υ Ts	 1

	

2	
<

lw
L ((ω−ωcs ) +ν

s)1/2

	
s

Now, the integral over the variable ws is rapidly attenuated due to the presence of the exponential
function. Hence, only small values of this variable need be considered. Take the value of this parameter to
be on the order of unity. There then remains the range of values of the mode number l. In order to
incorporate the long range effects within the plasma (for spatial dispersion effects), small values of this
parameter need be used; thus, take l = 1 . Hence, the condition of Equation (4.2) can finally be written as

((ω 	

Ts
1/2 

< 1	 (4.3)

L −ωcs )
2

+νs )

At resonance where ω ~ ωcs, this condition becomes

υTs < Lν s 	 (4.4)

which defines the region of weak spatial dispersion for this problem. The range over which this inequality
holds must now be examined.

4.2	 Weak Dispersion and a Re-entry Plasma

Since both the thermal velocity and collision frequency are functions of plasma temperature, it will be
instructive to determine over what temperature ranges Equation (4.4) holds for nominal thicknesses and
electron number densities. Figures 3 and 4 show the region of applicability of the constraint of Equation
(4.4) for a one-component electron plasma of thickness L = 30cm . As seen from these plots, the
applicability region becomes smaller over a range of temperatures as the electron concentration decreases.
Thus, for ne > 1010 / cm3 , the approximation of weak spatial dispersion can be expected to hold for

nominal re-entry temperatures that are typically Te > 3000K. The case in which ne ≤ 1010 / cm3 requires

one to consider the case of strong spatial dispersion.
In the case of weak spatial dispersion for this one-component plasma ( s ≡ e), Equation (4.1) reduces

to

2 ω2

∫ 
exp( − we ) 

a – 1 − -1 	 ωpe	 (4.5)E( κ l )≈ 1
−π ω 0( CO −ω ce + iν e ) 

we— 
ω (ω −ωce + iν e )

The analysis of Equation (3.72) proceeds along the same lines where, it must be added, that the
exponential factors oscillate away to zero. Also, with Equation (4.4) prevailing, the terms in Equation
(3.72) can be neglected in this approximation. In this event, Equation (3.70) can be written, using
Equation (4.5),

( κj − k2 + k2 A (ω)) ER (κl )= i L ( ER (L)( − 1 )
l

− ER ( 0 )) +
L 

( BR ( L )( − 1 )l − BR( 0 ))	 (4.6)

where

(4.2)
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_ 1	 ω2

A (ω) 	
pe

ω (ω −ω ce + iνe ) 	
(4.7)

From Equation (4.6), expressions for the boundary values ER (0) and ER (L) can be obtained from

which incident, reflected, and transmitted fields can be related finally giving rise to the associated
coefficients. Thus, defining

Dl (ω) ≡ κ2 − k2 + k2A( ω) 	 (4.8)l

one has

∞ 	 ∞

ER ( 0)=∑ ER (κ l )= 	
D

1
^

k

)
(BR (L)( − 1 )

l
− BR ( 0 )) 	 (4.9)

l=−∞ 	 l=−∞ l ω)

and

∞ 	 ∞

ER (L) = 
∑− 

ER (κ l )(− 1 )
l
 = 	 ^

ω) 
^^ )(BR (L) − BR (0)( − 1)

l
) 	 (4.10)

l=0 	 l=−∞
Dl

where, as noted earlier, the term with the coefficient κl sums to zero.

At this point, one needs to relate the magnetic fields BL (0) and BR (L) to the prevailing electric

fields on the boundaries so as to obtain from Equations (4.9) and (4.10) two equations in the two
unknowns ER (0) and ER (L) . From these, the reflection and transmission coefficients will be obtained.

To this end, from Equation (3.64),

BR(z) =
 k 

∂ER(z)	 (4.11)
∂z

As for the fields above the plasma layer at z = L , one can write

ER (z) = E0 exp (ik(L − z)) + ERefl exp ( −ik(L − z)) 	 (4.12)

where E0 is the incident electric field of the wave upon the plasma layer and ERefl is the field reflected
from the layer. Using Equation (4.12) in Equation (4.11) gives

BR(z) =− i [E0 exp (ik(L − z)) − ERefl exp ( −ik(L − z)) ⎤⎦ 	 (4.13)

Hence, on the boundary z = L ,

ER ( L ) = E0 + ERefl,	 BR (L) = −i(E0 − ERefl) 	 (4.14)

Similarly, for the transmitted field into the region z < 0,

ER(z) = ETrans exp (ik(L − z))	 (4.15)

giving at the boundary z = 0
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ER ( 0) = ETrans exp ( ikL ) , 	 BR ( 0 ) = −iETrans exp ( ikL)	 (4.16)

Substituting Equations (4.14) and (4.16) into Equations (4.9) and (4.10), defining

r ≡ 
ERefl	 t ≡ 

ETrans,(4.17)
E0	 E0

as well as

k Hy-- 
cs+L 1 − A ( ω ))

S1 ( ω ) ≡ ⎜ L 	 (4.18)
L ⎠ l=−∞ 

Dl ( ω )	 1 − A ( ω)

∞
1 	

cot( kL 1 − A ( ω ))
S2 ( ω ) ≡

^—

k

 J	
(4.19)

L	 DI ( co)	 1— A (c^)=−∞

yields

t exp ( ikL ) =−iS1 ( ω ) ( 1 − r ) + iS2 ( ω ) t exp ( ikL)	 (4.20)

	

1 + r =−iS2 ( ω ) ( 1 − r ) + iS1 ( ω ) t exp ( ikL)	 (4.21)

The solutions of these simultaneous equations for r and t will then yield the related coefficients of

reflection R = IrI
2

 and T = ItI
2

 as well as the related coefficient of absorption A =1— IrI
2

 − It I2 . Equations

(4.20) and (4.21) give, in this case of weak spatial dispersion,

r = 
1 − S1 (ω)+ SZ (w ) 	

(4.22)
( i + S2 (ω))

2
− S1 (ω)

and

t = 
W, (ω) exp ( − ikL)

(i + S2 (ω))
2
 − S1 (ω) 	

(4.23 )

Figures 5 to 7 display the results of the calculation of these relations for three electron concentrations
for a plasma of thickness L = 30 cm and Te = 3000 K [Sharkey, 2004] upon which an electromagnetic

wave of frequency f = 2.0 GHz is incident. As Figs. 5 and 6 show, the reflection coefficient (R) remains

at 1.0 and the transmission coefficient (T) remains at 0.0 until the magnitude of the applied magnetic field
goes above 500 Gauss. The absorption coefficient (A) also begins to rise (clearly shown in Fig. 6). After
this point, the coefficients rapidly oscillate and tend to their limits R → 0.0 , T → 1.0 , and A → 0.0. For
ne = 1.0 × 1011 /cm3 , these limits are quickly approached. At ne = 1.0 × 1012 /cm3 , oscillations of the

values of R and T remain beyond the magnitude of 10,000 Gauss although the values are clearly
separated. However, Fig. 7 for the case of ne = 1.0 × 1013 /cm3 shows that the oscillations remain mixed
together where the values of these coefficients exchange local maxima and minima.
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5.0 Conclusion

It is thus demonstrated that a magnetic field of nominal magnitude applied to the plasma makes the
plasma transparent to frequencies smaller than the plasma frequency thus substantiating the magnetic
windows concept. Magnetic fields on the order of 4 kGauss will render a plasma transparent at 2 GHz
with an electron concentration of 10 12 electrons/cm3 . As the plasma density evolves throughout re-entry,
the reflection, transmission, and absorption coefficients can oscillate over large ranges for a fixed applied
magnetic field. Hence, a variable magnetic field controlled, e.g, by the value of received power, must be
considered. Also, the case of strong spatial dispersion as well as the situation intermediate to weak and
strong spatial dispersion must yet be considered.

This example of a homogeneous plasma in a homogeneous magnetic field is certainly an idealization
of what would exist in reality. However, these results provide impetus for further work with more realistic
situations. Although Halbach magnets can be used to generate the applied magnetic field, some spatial
variation of the field should be introduced. The variations inherent in the plasma thickness, temperature,
and density must be addressed in the specification and design of a closed loop control system to adjust the
external magnetic field to maintain transparency. Finally, account of the other components of the plasma
must be made. In fact, with the surface ablation that occurs during re-entry, one should consider a dusty
plasma, the kinetics of which can be vastly different from the simple one-component electron plasma
considered here.
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Appendix A.—A Model of the Effective Collision Frequency

For purposes of the discussion given here, consider a two component plasma made up of electrons
and ions in an electric field t. The Boltzmann equation including the associated collision integral for an
electron in a two-component plasma is given by

∂f 	 ev v	 v v

∂t
+υ ∇rf + E ⋅∇

m	
6f + Scoll = 0 	 (A1.1)

where the complete collision integral is

Scoll ≡ ∫ ∫ q(u , θ )u [f (u) F (u 1 )− f (u ) F (u′1 )] d 3 υ dΩ 	 (A1.2)

In the case where the collision is limited to the scattering of an electron from an ion, q (u, θ) is the

differential cross-section of electron scattering where θ is the scattering angle, u ≡ I u − u1 I is the relative

velocity of the electron with respect to the ion, i.e., υ
v

 and u1 are the velocities, respectively, of the

electron and ion after collision whereas υ′v and v′1  are those before the collision. Additionally, F (u 1 ) is

the velocity distribution of the ions which is usually taken to be given by the Maxwell distribution of the
form of Equation (3.2), and dΩ = sin θdθdφ is the differential scattering angle.

Simplifications will now be introduced using what is known about the electrons in the plasma. First, it
is assumed that the thermal velocity of the electrons and ions are much greater than the associated v
directed velocities in the electric field. In this isotropic plasma case (i.e., where the magnetic field B = 0),

the spatial gradient of the distribution f is directed along the z axis, parallel to t. Hence, one can treat the
“directional” part of f as a perturbation in velocity space. The distribution can thus be expanded into zero-
order spherical polynomials, i.e., Legendre polynomials Pl (cos ϑ ) where ϑ is the angle between Ev and

υr , viz.,

	

f = f ( r , u , 0 = ∑ P (cos ϑ )f (r, u, t)	 (A1.3)
l=0

Writing

	

E ⋅∇6f = E cos ϑ∂
f 

+
E sin2 ϑ ∂f 	

(A1.4)
∂υ 	 υ 	 ∂ (cos ϑ )

and using Equations (A1.3) and (A1.4) in Equation (A1.1) give the following system of equations for fl

∂ 	 υ

at + 3 ∂ft + 3 at 	

E

	
( υ2fi )+ S0 = 0

∂fi + υ
⎛ ∂f0 + 2 ∂f2 ⎞

+ 
eE ⎛ ∂f0 + 2 ∂ (υ 3f2 ) ⎟ + S1 = 0

∂t ⎝ ∂z 5 ∂z ⎠ m ⎝ ∂υ 5υ 3 ∂υ l ⎠ (A1.5)

∂f2 	r a2 fl 	f3 ⎞ eE r 2 a ⎛ 1 1 	 3 a	 ⎞
+υ l( 2 + 

7 a
--J+ eE ( 2 υ a Ì I )fl + 	 a ( υ 4f3 )J+ S2 = 0

∂t 	 3 ∂z 3 ∂z 	 m 3 ∂υ υ 	 7υ 4 ∂υ
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where

Sl ≡ 
2l + 1 r

P ( cos ϑ ) SdΘ
4π J

∞

= 
2l + 1 	

(u θ uP((cos ϑ 	 P ′
(( cos ϑ′ F − F ′ 

∞

P (Cos ϑ ′′ ) 	 dQdO	 A1.6∫∫ q I ^ ) I l 	 )
1 l ′= 0

∑ fl- I l	 ) 	 ^ fl ′ 1 (	 ) υ 1 	( 	 )
4π ∫	

l ′= 0 	 ⎦

= ∫ ∫ q ( u , θ ) u(Ffl − Ff′P ( cos θ ) ) d 3 υ dΩ

In arriving at the result of Equation (A1.6), the integration over dΘ = sin ϑdϑdϕ made use of the fact
that

cos ϑ′′ = cos θ cos ϑ′ + sin θ sin ϑ′ cos ϕ

and the addition theorem for Legendre polynomials was employed.
The chain of equations of Equation (A1.5) can be terminated at the second one if the perturbation

component f2 can be neglected compared to the fundamental component f0 , i.e.,

af° >> 1 ∂ (υ3f2)∂υ 	 υ 3 ∂υ
	 (A1.7)

Before Equation (A1.7) can be established, one now needs to consider the expressions for the scattering
perturbations S0, S1, and S2. To this end, considerations will only be made of elastic collisions; in this

case, Equation (A1.6) gives for S1

S1 = ∫ ∫ q(u , θ) u(fl (υ
v
)F(υ

v
1 )− P1 (cos θ ) fl (υ ′ )F( υ ′1 ))d 3 υ 1 dΩ 	 (A1.8)

Assuming that the energy of the electron changes only slightly after collision with the ion, one has that
Iu I ≈ Iu l and u′1 l ≈ 

l
υ 1v I where u l >> 

l

υ 1
l

v . In this instance, Equation (A1.8) yields

S1 = fl (u) ∫ ∫ q(u , θ)υF(u 1 )( 1 − cos θ) d 3 υ 1 dΩ =ν 1 (υ) fl (υ) 	 (A1.9)

where the velocity dependent collision frequency is defined by

ν1(u) = Nionυ ∫ q( υ , θ)( 1 − cos θ) dΩ, Nion ≡ ∫ F( υ 1 )d 3υ 1 	 (A1.10)

Equation (A 1.9) begins to form the basis of the Krook model introduced in Equation (2.7) where a
velocity independent collision frequency vs was used. It is the central purpose of this Appendix to obtain
an expression of this velocity independent collision frequency from collision theory. Before this can be
accomplished, however, it remains to establish the prevailing conditions that allow the termination of the
system of equations of Equation (A1.5).

One can similarly show that
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S2 = ∫ ∫ q ( u , θ )u ( f2 (6) F (6 1 ) − P2 ( cos θ ) f2 (6 ′ ) F ( υ 1 )) d 3 υ 1 dΩ

= f2 ( u) ∫ ∫ q ( u , θ )υF ( u 1 ) r1 −
3cos

4

2θ+1 ⎞
d 3υ 1dΩ 	 (A1.11)

v2 ( υ) f2 ( υ) 	

⎝

where

ν 2 ( u ) = N o∫ (u 0 ) rI -
3cos20+1 ⎞

dΩ N	 υ 	 u	 (Al. 12)— ion q , 
⎝
	 4	 JJ ,	 ion —= ∫ F()d3

	

1	 1	 (A1 12 )

Thus, the quantities v1 (υ) and v2 (υ) are of the same order of magnitude and, for purposes of the

discussion to follow, v( υ) ≡ v1 (υ) ≈ v2 (υ) . Finally, an expression for S0 needs to be secured. The

calculation is trivial upon using Equation (A1.6) and noting the fact that energy exchange during
collisions does not occur with the approximations used above; hence, to first order, S0 = 0. Finally,

specializing to the special case of spatial homogeneity, ∂∂z = 0 in Equations (A1.5). Given the
developments above, these relations reduce to

∂f0 + eE 
∂ (υ 2fi )= 0	 (A1.13)

∂t 3mυ 2 ∂υ

∂fl
+ 

eE ∂f0 + v ( υ ) f = 0	 (A1.14)
∂t m ∂υ

∂f2
+

eE ⎛ 2
υ 

∂ ⎛ 1 )
f + 3 ∂ ( υ4 .f3 ))+ v ( υ ) f2 =0 	 (A1.15)

∂t m 
⎜
⎝ 3 ∂υ ⎝ υ 	 7υ 4 ∂υ

Consider now the steady state situation where f1, f2 — exp( − iω t) and hence ∂f1  ∂ t — −iωf1 and

∂f2 ∂ t — −iωf2 . Using these in Equations (A1.14) and (A1.15), dropping the second term within the

parentheses of Equation (A1.15) and solving for f
2 

gives

e2E2 	 ∂ 

C 

1 ∂fo ⎞
f2 — υ — — 

⎠
I⎟

m 2 ( ω2 + v2 ) ∂υ υ ∂υ

Hence, the condition of Equation (A1.7) becomes

e2 2

f0 >> 
m 2 coE+ v2 ( υ 2 ) ∂υ C

υ2 
∂υ

0

l	 ) 	 ⎠

If Equation (A1.17) holds, the original system of equations of Equation (A1.5) reduce to two:

∂f0 + eE ∂ 
( fi)υ 2 = 0

∂t 3mυ 2 ∂υ

(A1.16)

(A1.17)

(A1.18)
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∂fl + eE ∂f0 + v (υ) f = 0
∂t m ∂υ

(A1.19)

Finally, if the electric field is weak enough where the second term of Equation (A1.18) can be taken as a
first order perturbation, the symmetric portion of the distribution f retains its Maxwellian nature and the
solution to the problem reduces to (remembering Equation (A1.3))

f = f0 + f cos θ

∂ft
+

eE ∂f0 + v (υ)fi = 0
∂t me ∂υ

(A1.20)

In what is to follow, it is found advantageous to give the perturbation f1 a vector character by writing
Equation (A 1.20) as

v

f = f0 + fi ⋅ u	 (A1.21)
υ

v	 v
∂fl + eE ∂f0 + v (υ) fi = 0	 (A1.22)
∂t me ∂υ

v
where f1 is given the direction of t.

The total current induced in the plasma by the free electrons is given by

j = en
e ∫ 

15
f ( 15)d 3υ	 (A1.23)

Using Equation (A1.21) and converting the υ -integration into one in spherical coordinates gives, noting
the isotropy of f0 ,

∞ 2πv
j = 2πene ∫ ∫ υ 31, sin θdθdυ 	 (A1.24)

00

Now, from Equation (A1.22), one has in the steady state

et f∂ 0

v me ∂υ
f = − (A1.25)1

v(υ)− iω

Using Equation (3.2) in this result and substituting into Equation (A1.24) yields

v
8e2neE 

∞
' v(x)x4

 exp( −x2
 )	 ∞ x

4
 exp( −x2

 )j = 	 J	 2	 2	 dx + iω ∫ 2	 2	
dx

⎟
(A1.26)

V;Tr m ⎜ 0 ω + v (x)	
0 

ω + v (x) ⎠

where x ≡ υ m_mel2kB Te . In the event that the collision frequency is independent of the velocity, i.e.,

v(x) = v = const. , the integrals in Equation (A1.26) can be performed and give the result
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v
v 2

= 
e neE ⎛ v 

+ iω 	
1
	

J	
(A1.27)

me

	

ω2 + v2	 ω2 + v2

This result is identical to the one that is obtained by using elementary considerations. That is, using the
concept of an effective collision frequency v

eff , 
one simply uses Newton’s Law of motion for an electron

in an electric field and writes

v
d υ 	 v

me 
dt = 

eE − meveffu	 (A1.28)

Here, the effective collision frequency enters as a friction term. Again, considering the steady state and
solving for the velocity, one gets for the associated current

v

	

v
j = eneu = 

e2 neE ⎛ veff + iω 	
1
	 (A1.29)

me ω + eff ω2 + eff

In order to reconcile these two approaches, one considers the limiting case where (02 >> 
eff , v2 (x) .

Taking Equations (A1.26) and (A1.29) in this limit, equating the two results and solving for veff gives in
terms of the velocity dependent collision frequency

∞
8

	

veff = 
3 π ∫ v(x)x4 exp ( −x2 )dx	 (A1.30)

0

It is now necessary to find an expression for v(x) defined by Equation (A1. 10), given the scattering

situation assumed here. That is, elastic scattering of a fast moving electron from an essentially stationary
heavy ion. In this Coulomb scattering case, one must use the Rutherford scattering formula for the cross-
section required in Equation (A1. 10), viz.,

2 ⎞
2

q	
2m u2 	 4

1

θ 	
(A1.31)^u , 6)

e	 sin ( 2)

Substituting this expression into Equation (A1.10) and performing the azimuthal integration,

⎛ e2	
2 ∞

v (υ) = 2πnionυ ⎜ 2m u2 ) f 
1

4
cos

θ
 sin θdθ

e 	 sin I 2 )

	

θ

f

	 \	 (A1.32)
⎛ 	 ⎞

= 2πnion ⎜
e4

ln 
C

1 + cot 2 
C 

θ 
2 
in))

	

e υ ⎠ l	 l

where θ min is the minimum scattering angle which is related to the maximum value of the impact

parameter bmax,

	tan( θ mi
/ = 	

e2	

(A1.33)
2 meυ 2bmax
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Here, the impact parameter is determined by the fact that in a plasma where the interaction between the
ions and electrons is through a Coulomb field only, distances on the order of the Debye radius rD cannot
be exceeded since this is the maximum distance at which substantial interaction occurs between the
electron and ion; at distances greater than this, the field of the ion decreases exponentially. Hence, one
can write

1/ 2	 1/ 2
⎛_ __ 	 kBT onTe 	 kBTebmax — rD	 4πe2 nion ( kBT on + kBTe)	 8πe2nion	

(A 1.34)

where the last result issues from the assumption that Tion ≈ Te . For a typical re-entry plasma,

rD ~ 10−4 cm. Given the relative values of the parameters involved, one can write from Equation (A1.33),

z	 z

θ min = 2tan− 1
⎜

e 	 _ 2e
	(A1.35)

meυ 2rD ⎠ N meυ 2rD

Substituting this result into Equation (A1.32) and series expanding the cot2 function finally gives

⎛ 	 ⎞ ⎛
v ( υ ) = 2πnion 

e4

 
ln1 + 

r
D 
e4 

υ 4

⎟ (A1.36)
e

Finally, applying the substitution υ = x 2kBTeme in Equation (A1.36) and using this result in Equation

(A1.30) yields

4	
3/2 ∞

8 (
veff = 	 2πnion)

⎛ e 	 m e
⎟ ∫ x ln(1 + A2x4 )exp( −x2 ) dx

3 π ⎝ me ⎠⎝ 2kBTe 	
0 (A1.37)

	

= 
8 ⎛ 2πnion e4

11 
me 

3/2 
1 ⎛ 1 	 1	 1 	 1 ⎞⎤

3π ⎝ me ⎠^ 2kBTe ) ⎣ 2 
sin ⎜ A

 
J

⎜ π − 2 si ⎜ A 
JJ

− cos ⎜ A
 )

ci
(
A 

J

	

⎝ 	 ⎦

where A ≡ 2kBTerD e2 and ci ( L) and si ( L) are the cosine and sine integrals, respectively. For a

typical re-entry plasma, A ~ 102 >> 1. Thus, expanding the functions within the brackets of Equation
(A1.37) in an ascending series, the sine terms are negligible and one is left with
cos(1 A )ci(1 A ) ≈ − ln A +γ where γ is Euler’s constant, γ ≈ 0.577. Hence, Equation (A1.37) reduces to

veff = 
8 ⎛ 2πnione4 me

(

 f /2 

ln 
1.12kBTerD	 (A1.38)

	

3 π ⎝ me ⎠( 2kBTe	 e2	)

This is the expression for the effective collision frequency used in this work. To make contact with the
notation used in the text, one has vs = veff where s ≡ e. It must be remembered that this formulation
only accounts for elastic collisions between electrons and heavy ions. Of course, other scattering
processes can occur such as elastic and inelastic collisions with molecules, collisions with dust grains in
which charge transfer can also be attendant with impact, etc.

NASA/TM—2009-216096	 26



v
VT = VTx̂

personic Vehicle

v

	

E v	 Incident EM Field

	

k	 v
E = Exx̂ + Eyŷ
v

v B = Bxx̂ + Byŷ
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Figure 1.—The flowing plasma and its various fields and velocities.
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∇× B =
1 ∂E

+
4π v

E

2 	 2

c ∂t c	 R=Refl	
T = 

ETrans

E0, B0	 E0
	

E0

∇× E =−
1 ∂B

c ∂t

Maxwell Eqs.

v
v eE
F= E +—

e 
υ×( B + J0 )

m mc

Lorentz Force Eq.

∂f

	
F+ o ⋅ Vif+⋅∇rf =−νs(f−fo )

∂t

Boltzmann Eq.

v ∞

j = en ∫ of ( F, i5)d3υ

−∞

Plasma Current Eq.

Figure 2.—Electromagnetic and kinetic equations for a plasma in an external
magnetic field and an incident electromagnetic wave.
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Figure 4.—Region of applicability for weak spatial dispersion approximation for ne=1 011 electrons/cm3 and L=30 cm.
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Figure 5.—Reflection, transmission, and absorption coefficients versus applied magnetic field strength for
ne=1011 electrons/cm3.
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Figure 6.—Reflection, transmission, and absorption coefficients versus applied magnetic field strength for
ne= 1012 electrons/cm3.
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Figure 7.—Reflection, Transmission, and Absorption Coefficients Versus Applied Magnetic Field Strength for ne= 10 13

electrons/cm 3 .
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